2011 Drinking Water Quality Report Pearl River Valley Water Supply District System: PRVWSD- PELAHATCHIE BAY PWS ID: 610036

We're pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

If you have any questions about this report or concerning your water utility, please contact **Phillip Hunt at 601-992-9714**. It is very important to us that our valued customers are fully informed about their system. The District is an agency of the State of Mississippi and is managed by a Board of Directors. You are welcome to attend these meetings. The regularly scheduled meetings are held **at 9:30 a.m. on the third Thursday of each month in the District boardroom located at 115 Madison Landing Circle, Ridgeland Mississippi**.

Pearl River Valley Water Supply District routinely monitors for contaminants in your drinking water according to Federal and State laws. The water quality data table below lists all of the drinking water contaminants that we detected during the calendar year of this report, **January 1st to December 31st, 2011.** The presence of contaminates in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report.

Is my water safe?

Last year, we conducted tests for many contaminants. This report is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. Pearl River Valley Water Supply District is committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Our groundwater source is from four wells using water from the Sparta Aquifer.

Source water assessment and its availability

Our source water assessment has been completed. Our wells were ranked *LOWER* in terms of susceptibility to contamination. For a copy of the report, please contact our office at 601.992.9714.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Pearl River Valley Water Supply District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582 if you wish to have your water tested.

contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

			WAT	FER QUALIT	Y DATA 7	TABLE		
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit of Measure	MCLG	MCL	Likely Source of Contamination
DISINFECTANT	S & DISINFF	CCTION BY-	PRODUCTS					
Haloacetic Acids (HAA5)	N	June 2010	0.0	0	ppb	NA	60	By-product of drinking water chlorination
INORGANIC CO	NTAMINAN	TS						
Antimony	Ν	April 2011	< 0.0005	0	ppm	0.006	0.006	Discharge from petroleum refineries fire retardants; ceramics; electronics solder
Arsenic	N	April 2011	< 0.0005	0	ppm	NA	0.010	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium	N	April 2011	0.006464	0	ppm	2	2	Discharge of drilling waste; discharge from metal refineries; erosion of natural deposits
Beryllium	N	April 2011	< 0.0005	0	ppm	0.004	0.004	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace and defense industries
Cadmium	N	April 2011	< 0.0005	0	ppm	0.005	0.005	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium	N	April 2011	0.0009	0	ppm	0.1	0.1	Discharge from steel and pulp mills: Erosion of natural deposits.
Copper	N	August 2010	0.432	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural products leaching from wood preservatives
Cyanide	N	May 2011	0.015	0	ppm	0.2	0.2	Discharge from steel/metal factories discharge from plastic and fertilizer factories
Fluoride	N	April 2011	1.02	0	ppm	4	4	Erosion of natural deposits; Water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Lead	N	August 2010	0.003	0	ppm	0.015	AL= 0.015	Corrosion of household plumbing systems; erosion of natural deposits
Mercury (inorganic)	N	April 2011	< 0.0005	0	ppm	0.002	0.002	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Nitrate (as Nitrogen)	N	March 2011	< 0.08	0	ppm	10	10	Runoff of fertilizer use; leaching from septic tanks, sewage; erosion o natural deposits
Nitrite (as Nitrogen)	N	March 2011	< 0.02	0	ppm	1	1	Runoff of fertilizer use; leaching from septic tanks, sewage; erosion o natural deposits
Selenium	N	April 2011	< 0.0025	0	ppm	0.05	0.05	Discharge from petroleum and meta refineries; erosion of natural deposits; discharge from mines
Thallium	N	April 2011	< 0.0005	0	ppm	0.002	0.002	Discharge from ore-processing sites discharge from electronics, glass, and drug factories

VOLATILE ORG	ANIC CONT	AMINANTS						
Benzene	Ν	July 2010	< 0.5	0	ppb	0	5	Discharge from factories; leaching from gas storage tanks and landfills
Carbon Tetrachloride	N	July 2010	< 0.5	0	ppb	0	5	Discharge from chemical plants and other industrial activities
Mono- chlorobenzene	N	July 2010	< 0.5	0	ppb	100	100	Discharge from chemical and agricultural chemical factories
O- Dichlorobenzene	N	July 2010	< 0.5	0	ppb	600	600	Discharge from industrial chemical factories
P- Dichlorobenzene	N	July 2010	< 0.5	0	ppb	75	75	Discharge from industrial chemical factories
1,2- Dichloroethane	Ν	July 2010	< 0.5	0	ppb	5	5	Discharge from industrial chemical factories
1,1- Dichloroethylene	Ν	July 2010	< 0.5	0	ppb	7	7	Discharge from industrial chemical factories
Cis-1, 2- Dichloroethylene	Ν	July 2010	< 0.5	0	ppb	70	70	Discharge from industrial chemical factories
Trans-1,2- Dichloroethylene	N	July 2010	< 0.5	0	ppb	100	100	Discharge from industrial chemical factories
Dichloromethane	Ν	July 2010	< 0.5	0	ppb	5	5	Discharge from pharmaceutical and chemical factories
1,2- Dichloropropane	Ν	July 2010	< 0.5	0	ppb	5	5	Discharge from industrial chemical factories
Ethylbenzene	N	July 2010	< 0.5	0	ppb	700	700	Discharge from industrial chemical factories
Styrene	Ν	July 2010	< 0.5	0	ppb	100	100	Discharge from rubber and plastic factories; leaching from landfills
Tetra- chloroethylene	Ν	July 2010	< 0.5	0	ppb	5	5	Leaching from PVC pipes; discharge from factories and dry cleaners
1, 2, 4- Trichlorobenzen e	N	July 2010	< 0.5	0	ppb	70	70	Discharge from textile-finishing factories
1,1, 1- Trichloroethane	Ν	July 2010	< 0.5	0	ppb	200	200	Discharge from metal degreasing sites and other factories
1,1, 2- Trichloroethane	N	July 2010	< 0.5	0	ppb	5	5	Discharge from industrial chemical factories
Trichloro- ethylene	N	July 2010	< 0.5	0	ppb	5	5	Discharge from metal degreasing sites and other factories
Toluene	Ν	July 2010	< 0.5	0	ppb	1000	1000	Discharge from petroleum factories
Vinyl Chloride	N	July 2010	< 0.5	0	ppb	2	2	Leaching from PVC piping; discharge from plastics factories
Xylenes	Ν	July 2010	< 0.5	0	ppb	10000	10000	Discharge from petroleum factories; discharge from chemical factories
DISINFECTANT	S & DISINFE	CTION BY-I	PRODUCTS					Ι
Total Trihalomethanaes (TTHMs)	Ν	June 2010	19.75	0	ppb	0	80	By-product of drinking water chlorination
Contaminants	<u>Violation</u>	Sample <u>Date</u>	Your <u>Water</u>	Range <u>Low</u> High	Unit of Measure	MCLG or <u>MRDLG</u>	MCL., TT,or <u>MRDL</u>	<u>Typical Source</u>
Chlorine (as Cl2) (ppm)	N	2011	0.90	0.78 0.97	ppm	4	4	Water additive used to control microbes.

	MCLG	MCL,					
	OR	TT, OR	YOUR	RANGE	SAMPLE		
CONTAMINATES	MRDLG	MRDL	WATER	LOW/HIGH	DATE	VIOLATION	TYPICAL SOURCE
MICROBIOLOGICAL	L CONTAMINA	ANTS				-	
Total Coliform (positive	0	1	2	NA	August 2011	Yes	Naturally present in the environment

samples/month)				

VIOLATIONS AND EXCEEDANCES

Total Coliform

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems. The violation occurred on August 12, 2011 and lasted until August 19, 2011.

The two wells in violation were removed from service upon notification of the test results. After being removed from service, the wells were flushed, chlorinated, and sanitized. Additional coliform bacteria testing was conducted; this additional testing showed no coliform bacteria to be present. After the State Department of Health notified us that the further testing confirmed no coliform bacteria to be present, the wells were placed back into service on August 19, 2011. Pearl River Valley Water Supply District continues to check all wells 5-7 times each week as was being done before the positive results. The District also checks chlorine levels daily, in varying locations and times with data logged to track changes.

Unit Descriptions

Term	Definition
ppm	parts per million, or milligrams per liter (mg/L)
ppb	parts per billion, or micrograms per liter $(\mu g/L)$
positive samples/month	Number of samples taken monthly that were found to be positive
NA	Not applicable
ND	Not detected
NR	Monitoring not required, but recommended.

Important Drinking W	ater Definitions
Term	Definition
MCLG	Maximum Contaminant Level Goal: The level of a contaminant in drinking water
	below which there is no known or expected risk to health. MCLGs allow for a margin
	of safety.
MCL	Maximum Contaminant Level: The highest level of a contaminant that is allowed in
	drinking water. MCLs are set as close to the MCLGs as feasible using the best
	available treatment technology.
TT	Treatment Technique: A required process intended to reduce the level of a contaminant
	in drinking water.
AL	Action Level: The concentration of a contaminant which, if exceeded, triggers
	treatment or other requirements which a water system must follow.
MRDLG	Maximum residual disinfection level goal. The level of a drinking water disinfectant
	below which there is no known or expected risk to health. MRDLGs do not reflect the
	benefits of the use of disinfectants to control microbial contaminants.
MRDL	Maximum residual disinfectant level. The highest level of a disinfectant allowed in
	drinking water. There is convincing evidence that addition of a disinfectant is necessary
	for control of microbial contaminants.

To comply with the "Regulation governing Fluoridation of Community Water Supplies" the PRVWSD – PELAHATCHIE BAY is required to report certain results pertaining to fluoridation of our water system. The number of months in the previous calendar year that average fluoride sample results were within the optimal range of 0.7-1.3 ppm was 12. The percentage of fluoride samples collected in the previous calendar year that was within the optimal range of 0.7-1.3 ppm was 88%.

*****A MESSAGE FROM MSHD CONCERNING RADIOLOGICAL SAMPLING*****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 – December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. This is to notify you that as of this date, your water system has not completed the monitoring requirements. The Bureau of Public Water Supply has taken action to ensure that your water system be returned to compliance by March 31, 2013. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

The 2011 Consumer Confidence Report can be mailed upon request by contacting PRVWSD or view at www.therez.ms For more information please contact: Phillip Hunt

100 Reservoir Park Road Brandon, MS 39047 601-992-9714 / 601-992-2847 FAX or phunt@therez.ms

2011 Drinking Water Quality Report Pearl River Valley Water Supply District System: PRVWSD- MAIN HARBOR PWS ID: 450019

We're pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

If you have any questions about this report or concerning your water utility, please contact **Phillip Hunt at 601-992-9714**. It is very important to us that our valued customers are fully informed about their system. The District is an agency of the State of Mississippi and is managed by a Board of Directors. You are welcome to attend these meetings. The regularly scheduled meetings are held **at 9:30 a.m. on the third Thursday of each month in the District boardroom located at 115 Madison Landing Circle, Ridgeland Mississippi**.

Pearl River Valley Water Supply District routinely monitors for contaminants in your drinking water according to Federal and State laws. The water quality data table below lists all of the drinking water contaminants that we detected during the calendar year of this report, **January 1st to December 31st, 2011.** The presence of contaminates in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report.

Is my water safe?

Last year, we conducted tests for many contaminants. This report is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. Pearl River Valley Water Supply District is committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Our groundwater source is from four wells using water from the Cockfield Formation.

Source water assessment and its availability

Our source water assessment has been completed. Our wells were ranked *MODERATE* in terms of susceptibility to contamination. For a copy of the report, please contact our office at 601.992.9714.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

Monitoring and reporting of compliance data violations

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During February 2010 we did not monitor for bacteriological contaminants or chlorine residuals as required; therefore we cannot be sure of the water quality of our drinking water at that time. The number of samples required was 2. We took 1. To correct this problem, we will insure all samples are collected by the 15th of the month and reviewed by the District's Certified Waterworks Operator.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Pearl River Valley Water Supply District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health

Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582 if you wish to have your water tested.

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

			WAT	TER QUALIT	Y DATA 7	FABLE		
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit of Measure	MCLG	MCL	Likely Source of Contamination
DISINFECTANT	S & DISINFH	ECTION BY-	PRODUCTS					
Haloacetic Acids (HAA5)	N	September 2009	0.0	0	ppb	NA	60	By-product of drinking water chlorination
INORGANIC CO	NTAMINAN	TS						
Antimony	Ν	February 2010	0.0005	0	ppm	0.006	0.006	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic	N	February 2010	0.0005	0	ppm	NA	0.010	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium	N	February 2010	0.009086	0	ppm	2	2	Discharge of drilling waste; discharge from metal refineries; erosion of natural deposits
Beryllium	Ν	February 2010	0.0005	0	ppm	0.004	0.004	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace and defense industries
Cadmium	N	February 2010	0.0005	0	ppm	0.005	0.005	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium	Ν	February 2010	0.001139	0	ppm	0.1	0.1	Discharge from steel and pulp mills; Erosion of natural deposits.
Copper	Ν	August 2011	0.8	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural products; leaching from wood preservatives
Cyanide	Ν	Sept. 2010	0.015	0	ppm	0.2	0.2	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride	N	February 2010	1.15	0	ppm	4	4	Erosion of natural deposits; Water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Lead	Ν	Aug. 2011	0.001	0	ppm	0.015	AL= 0.015	Corrosion of household plumbing systems; erosion of natural deposits
Mercury (inorganic)	N	February 2010	0.0005	0	ppm	0.002	0.002	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Nitrate (as Nitrogen)	N	March 2011	0.08	0	ppm	10	10	Runoff of fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrite (as Nitrogen)	N	March 2011	0.02	0	ppm	1	1	Runoff of fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	N	February 2010	0.0025	0	ppm	0.05	0.05	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Thallium	N	February 2010	0.0005	0	ppm	0.002	0.002	Discharge from ore-processing sites; discharge from electronics, glass,

								and drug factories
Volatile Organic (Contaminants	:						
Benzene	Ν	September 2009	< 0.5	0	ppb	0	5	Discharge from factories; leaching from gas storage tanks and landfills
Carbon Tetrachloride	N	September 2009	< 0.5	0	ppb	0	5	Discharge from chemical plants and other industrial activities
Mono- chlorobenzene	Ν	September 2009	< 0.5	0	ppb	100	100	Discharge from chemical and agricultural chemical factories
O- Dichlorobenzene	N	September 2009	< 0.5	0	ppb	600	600	Discharge from industrial chemical factories
P- Dichlorobenzene	N	September 2009	< 0.5	0	ppb	75	75	Discharge from industrial chemical factories
1,2- Dichloroethane	Ν	September 2009	< 0.5	0	ppb	5	5	Discharge from industrial chemical factories
1,1- Dichloroethylene	Ν	September 2009	< 0.5	0	ppb	7	7	Discharge from industrial chemical factories
Cis-1, 2- Dichloroethylene	Ν	September 2009	< 0.5	0	ppb	70	70	Discharge from industrial chemical factories
Trans-1,2- Dichloroethylene	Ν	September 2009	< 0.5	0	ppb	100	100	Discharge from industrial chemical factories
Dichloromethane	Ν	September 2009	< 0.5	0	ppb	5	5	Discharge from pharmaceutical and chemical factories
1,2- Dichloropropane	Ν	September 2009	< 0.5	0	ppb	5	5	Discharge from industrial chemical factories
Ethylbenzene	Ν	September 2009	< 0.5	0	ppb	700	700	Discharge from industrial chemical factories
Styrene	Ν	September 2009	< 0.5	0	ppb	100	100	Discharge from rubber and plastic factories; leaching from landfills
Tetra- chloroethylene	N	September 2009	< 0.5	0	ppb	5	5	Leaching from PVC pipes; discharge from factories and dry cleaners
1, 2, 4- Trichlorobenzen e	N	September 2009	< 0.5	0	ppb	70	70	Discharge from textile-finishing factories
1,1, 1- Trichloroethane	N	September 2009	< 0.5	0	ppb	200	200	Discharge from metal degreasing sites and other factories
1,1, 2- Trichloroethane	Ν	September 2009	< 0.5	0	ppb	5	5	Discharge from industrial chemical factories
Trichloro- ethylene	Ν	September 2009	< 0.5	0	ppb	5	5	Discharge from metal degreasing sites and other factories
Toluene	Ν	September 2009	< 0.5	0	ppb	1000	1000	Discharge from petroleum factories
Vinyl Chloride	Ν	September 2009	< 0.5	0	ppb	2	2	Leaching from PVC piping; discharge from plastics factories
Xylenes	Ν	September 2009	< 0.5	0	ppb	10000	10000	Discharge from petroleum factories; discharge from chemical factories
DISINFECTANT	S & DISINFE	ECTION BY-	PRODUCTS					
Total Trihalomethanaes (TTHMs)	Ν	September 2009	0.00	0	ppb	0	80	By-product of drinking water disinfection.
Contaminants	<u>Violation</u>	Sample <u>Date</u>	Your <u>Water</u>	Range <u>Low</u> <u>High</u>	Unit of Measure	MCLG or <u>MRDLG</u>	MCL., TT,or <u>MRDL</u>	Typical Source
Chlorine (as Cl2) (ppm)	N	2011	0.80	0.60 / 0.95	ppm	4	4	Water additive used to control microbes.

Unit Descriptions	
Term	Definition
ppm	parts per million, or milligrams per liter (mg/L)
ppb	parts per billion, or micrograms per liter ($\mu g/L$)
positive samples/month	Number of samples taken monthly that were found to be positive
NA	Not applicable
ND	Not detected
NR	Monitoring not required, but recommended.

Important Drinking W	ater Definitions
Term	Definition
MCLG	Maximum Contaminant Level Goal: The level of a contaminant in drinking water below
	which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	Maximum Contaminant Level: The highest level of a contaminant that is allowed in
	drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	Treatment Technique: A required process intended to reduce the level of a contaminant
	in drinking water.
AL	Action Level: The concentration of a contaminant which, if exceeded, triggers treatment
	or other requirements which a water system must follow.
MRDLG	Maximum residual disinfection level goal. The level of a drinking water disinfectant
	below which there is no known or expected risk to health. MRDLGs do not reflect the
	benefits of the use of disinfectants to control microbial contaminants.
MRDL	Maximum residual disinfectant level. The highest level of a disinfectant allowed in
	drinking water. There is convincing evidence that addition of a disinfectant is necessary
	for control of microbial contaminants.

To comply with the "Regulation governing Fluoridation of Community Water Supplies" the PRVWSD – MAIN HARBOR is required to report certain results pertaining to fluoridation of our water system. The number of months in the previous calendar year that average fluoride sample results were within the optimal range of 0.7-1.3 ppm was 8. The percentage of fluoride samples collected in the previous calendar year that was within the optimal range of 0.7-1.3 ppm was 57%.

*****A MESSAGE FROM MSHD CONCERNING RADIOLOGICAL SAMPLING*****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 – December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. This is to notify you that as of this date, your water system has not completed the monitoring requirements. The Bureau of Public Water Supply has taken action to ensure that your water system be returned to compliance by March 31, 2013. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

The 2011 Consumer Confidence Report can be mailed upon request by contacting PRVWSD or view at www.therez.ms

For more information please contact:

Phillip Hunt 100 Reservoir Park Road Brandon, MS 39047 601-992-9714 601-992-2847 FAX phunt@therez.ms

2011 Drinking Water Quality Report Pearl River Valley Water Supply District System: PRVWSD- TWIN HARBOR PWS ID: 450024

We're pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

If you have any questions about this report or concerning your water utility, please contact **Phillip Hunt at 601-992-9714**. It is very important to us that our valued customers are fully informed about their system. The District is an agency of the State of Mississippi and is managed by a Board of Directors. You are welcome to attend these meetings. The regularly scheduled meetings are held **at 9:30 a.m. on the third Thursday of each month in the District boardroom located at 115 Madison Landing Circle, Ridgeland Mississippi**.

Pearl River Valley Water Supply District routinely monitors for contaminants in your drinking water according to Federal and State laws. The water quality data table below lists all of the drinking water contaminants that we detected during the calendar year of this report, **January 1st to December 31st, 2011.** The presence of contaminates in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report.

Is my water safe?

Last year, we conducted tests for many contaminants. This report is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. Pearl River Valley Water Supply District is committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Our groundwater source is from four wells using water from the Sparta Aquifer.

Source water assessment and its availability

Our source water assessment has been completed. Our wells were ranked *MODERATE* in terms of susceptibility to contamination. For a copy of the report, please contact our office at 601.992.9714.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Pearl River Valley Water Supply District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582 if you wish to have your water tested.

contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

			WAT	TER QUALIT	Y DATA 7	FABLE		
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit of Measure	MCLG	MCL	Likely Source of Contamination
DISINFECTANT	S & DISINFE	CTION BY-	PRODUCTS					
Haloacetic Acids (HAA5)	Ν	September 2009	10.0	0	ppb	NA	60	By-product of drinking water chlorination
INORGANIC CO	NTAMINAN	TS						
Antimony	Ν	February 2010	0.0005	0	ppm	0.006	0.006	Discharge from petroleum refineries fire retardants; ceramics; electronics solder
Arsenic	Ν	February 2010	0.0005	0	ppm	NA	0.010	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium	Ν	February 2010	0.002958	0	ppm	2	2	Discharge of drilling waste; discharge from metal refineries; erosion of natural deposits
Beryllium	Ν	February 2010	0.0005	0	ppm	0.004	0.004	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace and defense industries
Cadmium	Ν	February 2010	0.0005	0	ppm	0.005	0.005	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium	Ν	February 2010	0.000636	0	ppm	0.1	0.1	Discharge from steel and pulp mills; Erosion of natural deposits.
Copper	N	June 2009	0.1435	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural products leaching from wood preservatives
Cyanide	N	October 2010	0.015	0	ppm	0.2	0.2	Discharge from steel/metal factories discharge from plastic and fertilizer factories
Fluoride	N	February 2010	0.945	0	ppm	4	4	Erosion of natural deposits; Water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Lead	N	June 2009	0.0001	0	ppm	0.015	AL= 0.015	Corrosion of household plumbing systems; erosion of natural deposits
Mercury (inorganic)	N	February 2010	0.0005	0	ppm	0.002	0.002	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Nitrate (as Nitrogen)	N	March 2011	0.08	0	ppm	10	10	Runoff of fertilizer use; leaching from septic tanks, sewage; erosion o natural deposits
Nitrite (as Nitrogen)	N	March 2011	0.02	0	ppm	1	1	Runoff of fertilizer use; leaching from septic tanks, sewage; erosion o natural deposits
Selenium	N	February 2010	0.0025	0	ppm	0.05	0.05	Discharge from petroleum and meta refineries; erosion of natural deposits; discharge from mines
Thallium	Ν	February 2010	0.0005	0	ppm	0.002	0.002	Discharge from ore-processing sites discharge from electronics, glass, and drug factories

Volatile Organic (Contaminants							1
Benzene	Ν	July 2010	< 0.5	0	ppb	0	5	Discharge from factories; leaching from gas storage tanks and landfills
Carbon Tetrachloride	Ν	July 2010	< 0.5	0	ppb	0	5	Discharge from chemical plants and other industrial activities
Mono- chlorobenzene	Ν	July 2010	< 0.5	0	ppb	100	100	Discharge from chemical and agricultural chemical factories
O- Dichlorobenzene	Ν	July 2010	< 0.5	0	ppb	600	600	Discharge from industrial chemical factories
P- Dichlorobenzene	Ν	July 2010	< 0.5	0	ppb	75	75	Discharge from industrial chemical factories
1,2- Dichloroethane	Ν	July 2010	< 0.5	0	ppb	5	5	Discharge from industrial chemical factories
1,1- Dichloroethylene	Ν	July 2010	< 0.5	0	ppb	7	7	Discharge from industrial chemical factories
Cis-1, 2- Dichloroethylene	Ν	July 2010	< 0.5	0	ppb	70	70	Discharge from industrial chemical factories
Trans-1,2- Dichloroethylene	Ν	July 2010	< 0.5	0	ppb	100	100	Discharge from industrial chemical factories
Dichloromethane	Ν	July 2010	< 0.5	0	ppb	5	5	Discharge from pharmaceutical and chemical factories
1,2- Dichloropropane	N	July 2010	< 0.5	0	ppb	5	5	Discharge from industrial chemical factories
Ethylbenzene	Ν	July 2010	< 0.5	0	ppb	700	700	Discharge from industrial chemical factories
Styrene	Ν	July 2010	< 0.5	0	ppb	100	100	Discharge from rubber and plastic factories; leaching from landfills
Tetra- chloroethylene	Ν	July 2010	< 0.5	0	ppb	5	5	Leaching from PVC pipes; discharge from factories and dry cleaners
1, 2, 4- Trichlorobenzen e	Ν	July 2010	< 0.5	0	ppb	70	70	Discharge from textile-finishing factories
1,1, 1- Trichloroethane	Ν	July 2010	< 0.5	0	ppb	200	200	Discharge from metal degreasing sites and other factories
1,1, 2- Trichloroethane	N	July 2010	< 0.5	0	ppb	5	5	Discharge from industrial chemical factories
Trichloro- ethylene	Ν	July 2010	< 0.5	0	ppb	5	5	Discharge from metal degreasing sites and other factories
Toluene	Ν	July 2010	< 0.5	0	ppb	1000	1000	Discharge from petroleum factories
Vinyl Chloride	Ν	July 2010	< 0.5	0	ppb	2	2	Leaching from PVC piping; discharge from plastics factories
Xylenes	Ν	July 2010	< 0.5	0	ppb	10000	10000	Discharge from petroleum factories; discharge from chemical factories
DISINFECTANT	S & DISINFE	CCTION BY-	PRODUCTS					
Total Trihalomethanaes (TTHMs)	Ν	September 2009	21.30	0	ppb	0	80	By-product of drinking water disinfection.
Contaminants	<u>Violation</u>	Sample <u>Date</u>	Your <u>Water</u>	Range <u>Low High</u>	Unit of Measure	MCLG or <u>MRDLG</u>	MCL., TT,or <u>MRDL</u>	Typical Source
Chlorine (as Cl2) (ppm)	Ν	2011	0.90	0.65 / 1.55	ppm	4	4	Water additive used to control microbes.

Unit Descriptions	
Term	Definition
ppm	parts per million, or milligrams per liter (mg/L)
ppb	parts per billion, or micrograms per liter (μ g/L)
positive samples/month	Number of samples taken monthly that were found to be positive
NA	Not applicable
ND	Not detected
NR	Monitoring not required, but recommended.

Important Drinking Water Definitions				
Term	Definition			
MCLG	Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.			
MCL	Maximum Contaminant Level: The highest level of a contaminant that is allowed in			
	drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.			
TT	Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.			
AL	Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.			
MRDLG	Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.			
MRDL	Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.			

To comply with the "Regulation governing Fluoridation of Community Water Supplies" the PRVWSD – TWIN HARBOR is required to report certain results pertaining to fluoridation of our water system. The number of months in the previous calendar year that average fluoride sample results were within the optimal range of 0.7-1.3 ppm was 12. The percentage of fluoride samples collected in the previous calendar year that was within the optimal range of 0.7-1.3 ppm was 100%.

*****A MESSAGE FROM MSHD CONCERNING RADIOLOGICAL SAMPLING*****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 – December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. This is to notify you that as of this date, your water system has not completed the monitoring requirements. The Bureau of Public Water Supply has taken action to ensure that your water system be returned to compliance by March 31, 2013. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

The 2011 Consumer Confidence Report can be mailed upon request by contacting PRVWSD or view at www.therez.ms

For more information please contact:

Phillip Hunt 100 Reservoir Park Road Brandon, MS 39047 601-992-9714 601-992-2847 FAX phunt@therez.ms

2011 Drinking Water Quality Report Pearl River Valley Water Supply District System: PRVWSD- HIGHWAY 43 PWS ID: 610035

We're pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

If you have any questions about this report or concerning your water utility, please contact **Phillip Hunt at 601-992-9714**. It is very important to us that our valued customers are fully informed about their system. The District is an agency of the State of Mississippi and is managed by a Board of Directors. You are welcome to attend these meetings. The regularly scheduled meetings are held **at 9:30 a.m. on the third Thursday of each month in the District boardroom located at 115 Madison Landing Circle, Ridgeland Mississippi**.

Pearl River Valley Water Supply District routinely monitors for contaminants in your drinking water according to Federal and State laws. The water quality data table below lists all of the drinking water contaminants that we detected during the calendar year of this report, **January 1st to December 31st, 2011.** The presence of contaminates in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report.

Is my water safe?

Last year, we conducted tests for many contaminants. This report is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. Pearl River Valley Water Supply District is committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Our groundwater source is from four wells using water from the Cockfield Formation and Sparta Aquifer.

Source water assessment and its availability

Our source water assessment has been completed. Our wells were ranked *MODERATE* in terms of susceptibility to contamination. For a copy of the report, please contact our office at 601.992.9714.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Pearl River Valley Water Supply District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582 if you wish to have your water tested.

contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

			WAT	TER QUALIT	Y DATA 7	FABLE		
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit of Measure	MCLG	MCL	Likely Source of Contamination
DISINFECTANT	S & DISINFE	CTION BY-	PRODUCTS					
Haloacetic Acids (HAA5)	N	August 2011	15.0	0	ppb	NA	60	By-product of drinking water chlorination
INORGANIC CO	NTAMINAN	TS			1	I		
Antimony	N	February 2010	0.0005	0	ppm	0.006	0.006	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic	N	February 2010	0.0005	0	ppm	NA	0.10	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium	N	February 2010	0.004283	0	ppm	2	2	Discharge of drilling waste; discharge from metal refineries; erosion of natural deposits
Beryllium	N	February 2010	0.0005	0	ppm	0.004	0.004	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace and defense industries
Cadmium	N	February 2010	0.0005	0	ppm	0.005	0.005	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium	Ν	February 2010	0.001307	0	ppm	0.1	0.1	Discharge from steel and pulp mills; Erosion of natural deposits.
Copper	Ν	August 2011	0.20	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural products; leaching from wood preservatives
Cyanide	Ν	March 2010	0.015	0	ppm	0.2	0.2	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride	N	February 2010	1.12	0	ppm	4	4	Erosion of natural deposits; Water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Lead	Ν	August 2011	0.002	0	ppm	0.015	AL= 0.015	Corrosion of household plumbing systems; erosion of natural deposits
Mercury (inorganic)	Ν	February 2010	0.0005	0	ppm	0.002	0.002	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Nitrate (as Nitrogen)	N	March 2011	0.08	0	ppm	10	10	Runoff of fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrite (as Nitrogen)	N	March 2011	0.02	0	ppm	1	1	Runoff of fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	N	February 2010	0.0025	0	ppm	0.05	0.05	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Thallium	N	February 2010	0.0005	0	ppm	0.002	0.002	Discharge from ore-processing sites; discharge from electronics, glass, and drug factories
Benzene	N	July 2010	0.5	0	ppb	0	5	Discharge from factories; leaching from gas storage tanks and landfills

Carbon Tetrachloride	Ν	July 2010	0.5	0	ppb	0	5	Discharge from chemical plants and other industrial activities
Mono- chlorobenzene	N	July 2010	0.5	0	ppb	100	100	Discharge from chemical and agricultural chemical factories
O- Dichlorobenzene	Ν	July 2010	0.5	0	ppb	600	600	Discharge from industrial chemical factories
P- Dichlorobenzene	Ν	July 2010	0.5	0	ppb	75	75	Discharge from industrial chemical factories
1,2- Dichloroethane	Ν	July 2010	0.5	0	ppb	5	5	Discharge from industrial chemical factories
1,1- Dichloroethylene	Ν	July 2010	0.5	0	ppb	7	7	Discharge from industrial chemical factories
Cis-1, 2- Dichloroethylene	Ν	July 2010	0.5	0	ppb	70	70	Discharge from industrial chemical factories
Trans-1,2- Dichloroethylene	Ν	July 2010	0.5	0	ppb	100	100	Discharge from industrial chemical factories
Dichloromethane	Ν	July 2010	0.5	0	ppb	5	5	Discharge from pharmaceutical and chemical factories
1,2- Dichloropropane	Ν	July 2010	0.5	0	ppb	5	5	Discharge from industrial chemical factories
Ethylbenzene	Ν	July 2010	0.5	0	ppb	700	700	Discharge from industrial chemical factories
Styrene	Ν	July 2010	0.5	0	ppb	100	100	Discharge from rubber and plastic factories; leaching from landfills
Tetra- chloroethylene	Ν	July 2010	0.5	0	ppb	5	5	Leaching from PVC pipes; discharge from factories and dry cleaners
1, 2, 4- Trichlorobenzen e	Ν	July 2010	0.5	0	ppb	70	70	Discharge from textile-finishing factories
1,1, 1- Trichloroethane	Ν	July 2010	0.5	0	ppb	200	200	Discharge from metal degreasing sites and other factories
1,1, 2- Trichloroethane	Ν	July 2010	0.5	0	ppb	5	5	Discharge from industrial chemical factories
Trichloro- ethylene	Ν	July 2010	0.5	0	ppb	5	5	Discharge from metal degreasing sites and other factories
Toluene	Ν	July 2010	0.5	0	ppb	1000	1000	Discharge from petroleum factories
Vinyl Chloride	Ν	July 2010	0.5	0	ppb	2	2	Leaching from PVC piping; discharge from plastics factories
Xylenes	Ν	July 2010	0.5	0	ppb	10000	10000	Discharge from petroleum factories; discharge from chemical factories
DISINFECTANT	S & DISINFE	CTION BY-I	PRODUCTS	r				Г
Total Trihalomethanaes (TTHMs)	Ν	August 2011	10.81	0	ppb	0	80	By-product of drinking water chlorination
Contaminants	<u>Violation</u>	Sample <u>Date</u>	Your <u>Water</u>	Range <u>Low</u> <u>High</u>	Unit of Measure	MCLG or <u>MRDLG</u>	MCL., TT,or <u>MRDL</u>	Typical Source
Chlorine (as Cl2) (ppm)	Ν	2011	0.90	0.80 / 1.05	ppm	4	4	Water additive used to control microbes.

Unit Descriptions	
Term	Definition
ppm	parts per million, or milligrams per liter (mg/L)
ppb	parts per billion, or micrograms per liter ($\mu g/L$)
positive samples/month	Number of samples taken monthly that were found to be positive
NA	Not applicable
ND	Not detected
NR	Monitoring not required, but recommended.

Г

Important Drinking Water Definitions				
Term	Definition			
MCLG	Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.			
MCL	Maximum Contaminant Level: The highest level of a contaminant that is allowed in			
	drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.			
TT	Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.			
AL	Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.			
MRDLG	Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.			
MRDL	Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.			

To comply with the "Regulation governing Fluoridation of Community Water Supplies" the PRVWSD – HIGHWAY 43 is required to report certain results pertaining to fluoridation of our water system. The number of months in the previous calendar year that average fluoride sample results were within the optimal range of 0.7-1.3 ppm was 12. The percentage of fluoride samples collected in the previous calendar year that was within the optimal range of 0.7-1.3 ppm was 100%.

*****A MESSAGE FROM MSHD CONCERNING RADIOLOGICAL SAMPLING*****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 – December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. This is to notify you that as of this date, your water system has not completed the monitoring requirements. The Bureau of Public Water Supply has taken action to ensure that your water system be returned to compliance by March 31, 2013. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

The 2011 Consumer Confidence Report can be mailed upon request by contacting PRVWSD or can view at www.therez.ms

For more information please contact:

Phillip Hunt 100 Reservoir Park Road Brandon, MS 39047 601-992-9714 601-992-2847 FAX phunt@therez.ms